18 research outputs found

    Effects of maternal immune activation and repeated maternal separation on postpartum behaviors in the female rat offspring

    Get PDF
    Early life stress can induce persistent brain and behavioral alterations. As a lifetime history of clinical symptoms similar to those caused by early adversities may predict postpartum dysfunctions, these stressors likely contribute to their etiology. Postpartum neuropsychiatric disorders (e.g. postpartum depression, anxiety and depression) are costly, yet due to the complex neuronal reorganization during this period, insights into how early adversities-induced CNS functional changes affect postpartum processes remain limited, especially under multiple stressors. Thus, there is a need to determine postpartum functions altered by early stress, in order to increase understandings of risks associated with postpartum maladaptations. Accordingly, this work was designed to assess early stress-induced behavioral and neuronal changes in postpartum female rats, using pre- and postnatal stressors independently and concurrently. We hypothesized that pre- and/or postnatal insults would disrupt postpartum cognitive and affective regulations, maternal behaviors, and neuronal functions. Females exposed to maternal immune activation (MIA) in utero and/or repeated maternal separation (RMS) in the early postnatal period were assessed for maternal performance in postpartum. Prepulse inhibition (PPI) of acoustic startle response (ASR), forced swim test (FST), sucrose preference, fear potentiated startle (FPS), and conditioned avoidance response (CAR) were also tested in both dams and virgin littermates to assess various psychological functions. In neuronal functions, c-Fos expression following FPS, and amphetamine-, phencyclidine- (PCP), nicotine-, and 2,5-dimethoxy-4-iodoamphetamine-induced hyperlocomotion were examined. Results show that MIA reduced nest building in mother rats, as well as their PPI and CAR performance. MIA also increased dorsal medial preoptic area and dorsal periaqueductal grey c-Fos following FPS. In addition, virgin offspring exposed to MIA also showed reduced struggling behavior in the FST and increased basolateral and medial amygdala c-Fos following FPS. RMS reduced nest building, ASR, FPS, and amphetamine- and PCP-induced hyperlocomotion, and increased dentate gyrus c-Fos following FPS. MIA and RMS were antagonistic in maternal behaviors and ASR, and otherwise showed little interactive effects. Overall, these results indicate that early environmental stressors could have long-term impacts on postpartum functions, including maternal behavior and performances in various behavioral tests. This impact is also influenced by reproductive experiences

    Adolescent olanzapine sensitization is correlated with hippocampal stem cell proliferation in a maternal immune activation rat model of schizophrenia

    Get PDF
    Previous work established that repeated olanzapine (OLZ) administration in normal adolescent rats induces a sensitization effect (i.e. increased behavioral responsiveness to drug re-exposure) in the conditioned avoidance response (CAR) model. However, it is unclear whether the same phenomenon can be detected in animal models of schizophrenia. The present study explored the generalizability of OLZ sensitization from healthy animals to a preclinical neuroinflammatory model of schizophrenia in the CAR. Maternal immune activation (MIA) was induced via polyinosinic:polycytidilic acid (PolyI:C) administration into pregnant dams. Behavioral assessments of offspring first identified decreased maternal separation-induced pup ultrasonic vocalizations and increased amphetamine-induced hyperlocomotion in animals prenatally exposed to PolyI:C. In addition, repeated adolescent OLZ administration confirmed the generalizability of the sensitization phenomenon. Using the CAR test, adolescent MIA animals displayed similar increase in behavioral responsiveness after repeated OLZ exposure during both the repeated drug test days as well as a subsequent challenge test. Neurobiologically, few studies examining the relationship between hippocampal cell proliferation and survival and either antipsychotic exposure or MIA have incorporated concurrent behavioral changes. Thus, the current study also sought to reveal the correlation between OLZ behavioral sensitization in the CAR and hippocampal cell proliferation and survival. 5′-bromodeoxyuridine immunohistochemistry identified a positive correlation between the magnitude of OLZ sensitization (i.e. change in avoidance suppression induced by OLZ across days) and hippocampal cell proliferation, and a negative correlation between OLZ sensitization magnitude and hippocampal short term cell survival. The implications of the relationship between behavioral and neurobiological results are discussed

    Adolescent olanzapine sensitization is correlated with hippocampal stem cell proliferation in a maternal immune activation rat model of schizophrenia

    Get PDF
    Previous work established that repeated olanzapine (OLZ) administration in normal adolescent rats induces a sensitization effect (i.e. increased behavioral responsiveness to drug re-exposure) in the conditioned avoidance response (CAR) model. However, it is unclear whether the same phenomenon can be detected in animal models of schizophrenia. The present study explored the generalizability of OLZ sensitization from healthy animals to a preclinical neuroinflammatory model of schizophrenia in the CAR. Maternal immune activation (MIA) was induced via polyinosinic:polycytidilic acid (PolyI:C) administration into pregnant dams. Behavioral assessments of offspring first identified decreased maternal separation-induced pup ultrasonic vocalizations and increased amphetamine-induced hyperlocomotion in animals prenatally exposed to PolyI:C. In addition, repeated adolescent OLZ administration confirmed the generalizability of the sensitization phenomenon. Using the CAR test, adolescent MIA animals displayed similar increase in behavioral responsiveness after repeated OLZ exposure during both the repeated drug test days as well as a subsequent challenge test. Neurobiologically, few studies examining the relationship between hippocampal cell proliferation and survival and either antipsychotic exposure or MIA have incorporated concurrent behavioral changes. Thus, the current study also sought to reveal the correlation between OLZ behavioral sensitization in the CAR and hippocampal cell proliferation and survival. 5′-bromodeoxyuridine immunohistochemistry identified a positive correlation between the magnitude of OLZ sensitization (i.e. change in avoidance suppression induced by OLZ across days) and hippocampal cell proliferation, and a negative correlation between OLZ sensitization magnitude and hippocampal short term cell survival. The implications of the relationship between behavioral and neurobiological results are discussed

    Maternal Immune Activation Causes Behavioral Impairments and Altered Cerebellar Cytokine and Synaptic Protein Expression

    Get PDF
    Emerging epidemiology studies indicate that maternal immune activation (MIA) resulting from inflammatory stimuli such as viral or bacterial infections during pregnancy serves as a risk factor for multiple neurodevelopmental disorders including autism spectrum disorders and schizophrenia. Although alterations in the cortex and hippocampus of MIA offspring have been described, less evidence exists on the impact on the cerebellum. Here, we report altered expression of cytokines and chemokines in the cerebellum of MIA offspring, including increase in the neuroinflammatory cytokine TNFα and its receptor TNFR1. We also report reduced expression of the synaptic organizing proteins cerebellin-1 and GluRδ2. These synaptic protein alterations are associated with a deficit in the ability of cerebellar neurons to form synapses and an increased number of dendritic spines that are not in contact with a presynaptic terminal. These impairments are likely contributing to the behavioral deficits in the MIA exposed offspring

    Behavioral, Pharmacological and Neuroanatomical Analysis of Serotonin 2C Receptor Agonism on Maternal Behavior in Rats

    Get PDF
    As a highly motivated social behavior, maternal behavior in rats has been routinely used to study psychoactive drugs for clinical, neuroscience and pharmacological purposes. Recent evidence indicates that acute activation of serotonin 2C (5-HT2C) receptors causes a disruption of rat maternal behavior. The present study was designed to elucidate the behavioral, pharmacological mechanisms and neuroanatomical basis of this 5-HT2C effect. First, we replicated the finding that acute MK212 injection (2.0 mg/kg, a highly selective 5-HT2C agonist) disrupts maternal behavior, especially on pup retrieval. Interestingly, this disruption was significantly attenuated by 4-h pup separation (a procedure putatively increased maternal motivation). MK212 also suppressed food retrieval, indicating that it has a general effect on motivated behaviors. Second, we showed that MK212 disrupts maternal behavior by specifically activating 5-HT2C receptor, as pretreatment with a 5-HT2C receptor antagonist SB242084 (0.6 and 1.0 mg/kg) alleviated MK212-induced disruption on pup retrieval. Third, we microinjected MK212 into various brain regions implicated in the regulation of maternal behavior: nucleus accumbens shell (25, 75, 250 ng/0.5μl/side), medial prefrontal cortex (25 and 250 ng, 1, 2 and 5 μg/0.5μl/side), and medial preoptic area (MPOA, 75 ng, 1 and 5 μg/0.5μl/side). Pup retrieval and other maternal responses were not affected by any of these manipulations. Finally, we used c-Fos immunohistochemistry to identify the central mechanisms of the acute and repeated MK212 effects on maternal behavior. Acute MK212 (2.0 mg/kg) disrupted pup retrieval and concurrently decreased c-Fos expression in the ventral part of lateral septal nucleus (LSv), MPOA, dentate gyrus (DG) and dorsal raphe (DR), but increased it in the central amygdala (CeA). Five days of repeated MK212 (2.0 mg/kg) treatment produced a persistent disruption of pup retrieval and only decreased c-Fos expression in the DR. These findings not only confirm a role of 5-HT2C receptor in rat maternal behavior, but also suggest that the coordinated 5-HT2C activity in various limbic (e.g., LSv, DG, CeA), hypothalamic regions (e.g., MPOA) and brainstem areas (e.g. DR), is likely involved in the mediation of important psychological processes (e.g. motor function, motivation) necessary for the normal expression of maternal behavior

    Maternal Immune Activation Causes Behavioral Impairments and Altered Cerebellar Cytokine and Synaptic Protein Expression

    Get PDF
    Emerging epidemiology studies indicate that maternal immune activation (MIA) resulting from inflammatory stimuli such as viral or bacterial infections during pregnancy serves as a risk factor for multiple neurodevelopmental disorders including autism spectrum disorders and schizophrenia. Although alterations in the cortex and hippocampus of MIA offspring have been described, less evidence exists on the impact on the cerebellum. Here, we report altered expression of cytokines and chemokines in the cerebellum of MIA offspring, including increase in the neuroinflammatory cytokine TNFα and its receptor TNFR1. We also report reduced expression of the synaptic organizing proteins cerebellin-1 and GluRδ2. These synaptic protein alterations are associated with a deficit in the ability of cerebellar neurons to form synapses and an increased number of dendritic spines that are not in contact with a presynaptic terminal. These impairments are likely contributing to the behavioral deficits in the MIA exposed offspring

    Female rats display higher methamphetamine-primed reinstatement and c-Fos immunoreactivity than male rats

    Get PDF
    Methamphetamine (meth) dependence is often characterized by persistent and chronic relapse (i.e., return to drug use). Previous work suggests females may be at greater risk to relapse. In this study, we extended this limited evidence and identified sex-dependent neural substrates related to meth-triggered reinstatement. Male and female Sprague-Dawley rats were implanted with indwelling jugular catheters. Half of the rats were then trained to self-administer meth (0.05 mg/kg/inf); the other half self-administered saline during 21 daily sessions (2 h). Rats were then given 12 extinction sessions. Twenty-four hours after the last extinction session, rats received reinstatement testing. Half of the rats received a meth-prime (0.3 mg/kg, IP) injection and the remaining rats received a saline injection. This design resulted in 4 separate groups for each sex, allowing for careful investigation of brain regions related to meth-triggered reinstatement. Brains were harvested following the reinstatement session and c-Fos immunoreactivity was measured in multiple brain regions. Meth triggered reinstatement in both sexes and this effect was more robust in females compared to males. Significant sex differences were detected. Females showed greater c-Fos immunoreactivity in the cingulate cortex area 1, lateral orbitofrontal cortex, prelimbic cortex, caudate-putamen, nucleus accumbens core and shell, and central nucleus of the amygdala following meth-primed reinstatement

    Behavioral, Pharmacological and Neuroanatomical Analysis of Serotonin 2C Receptor Agonism on Maternal Behavior in Rats

    Get PDF
    As a highly motivated social behavior, maternal behavior in rats has been routinely used to study psychoactive drugs for clinical, neuroscience and pharmacological purposes. Recent evidence indicates that acute activation of serotonin 2C (5-HT2C) receptors causes a disruption of rat maternal behavior. The present study was designed to elucidate the behavioral, pharmacological mechanisms and neuroanatomical basis of this 5-HT2C effect. First, we replicated the finding that acute MK212 injection (2.0 mg/kg, a highly selective 5-HT2C agonist) disrupts maternal behavior, especially on pup retrieval. Interestingly, this disruption was significantly attenuated by 4-h pup separation (a procedure putatively increased maternal motivation). MK212 also suppressed food retrieval, indicating that it has a general effect on motivated behaviors. Second, we showed that MK212 disrupts maternal behavior by specifically activating 5-HT2C receptor, as pretreatment with a 5-HT2C receptor antagonist SB242084 (0.6 and 1.0 mg/kg) alleviated MK212-induced disruption on pup retrieval. Third, we microinjected MK212 into various brain regions implicated in the regulation of maternal behavior: nucleus accumbens shell (25, 75, 250 ng/0.5μl/side), medial prefrontal cortex (25 and 250 ng, 1, 2 and 5 μg/0.5μl/side), and medial preoptic area (MPOA, 75 ng, 1 and 5 μg/0.5μl/side). Pup retrieval and other maternal responses were not affected by any of these manipulations. Finally, we used c-Fos immunohistochemistry to identify the central mechanisms of the acute and repeated MK212 effects on maternal behavior. Acute MK212 (2.0 mg/kg) disrupted pup retrieval and concurrently decreased c-Fos expression in the ventral part of lateral septal nucleus (LSv), MPOA, dentate gyrus (DG) and dorsal raphe (DR), but increased it in the central amygdala (CeA). Five days of repeated MK212 (2.0 mg/kg) treatment produced a persistent disruption of pup retrieval and only decreased c-Fos expression in the DR. These findings not only confirm a role of 5-HT2C receptor in rat maternal behavior, but also suggest that the coordinated 5-HT2C activity in various limbic (e.g., LSv, DG, CeA), hypothalamic regions (e.g., MPOA) and brainstem areas (e.g. DR), is likely involved in the mediation of important psychological processes (e.g. motor function, motivation) necessary for the normal expression of maternal behavior

    Repeated effects of the neurotensin receptor agonist PD149163 in three animal tests of antipsychotic activity: Assessing for tolerance and cross-tolerance to clozapine

    Get PDF
    Neurotensin is an endogenous neuropeptide closely associated with the mesolimbic dopaminergic system and shown to possess antipsychotic-like effects. In particular, acute neurotensin receptor activation can inhibit conditioned avoidance response (CAR), attenuate phencyclidine (PCP)-induced prepulse inhibition (PPI) disruptions, and reverse PCP-induced hyperlocomotion. However, few studies have examined the long term effects of repeated neurotensin receptor activation and results are inconsistent. Since clinical administration of antipsychotic therapy often requires a prolonged treatment schedule, here we assessed the effects of repeated activation of neurotensin receptors using an NTS1 receptor selective agonist, PD149163, in 3 behavioral tests of antipsychotic activity. We also investigated whether reactivity to the atypical antipsychotic clozapine was altered following prior PD149163 treatment. Using both normal and prenatally immune activated rats generated through maternal immune activation with polyinosinic:polycytidilic acid, we tested PD149163 in CAR, PCP (1.5 mg/kg)-induced PPI disruption, and PCP (3.2 mg/kg)-induced hyperlocomotion. For each paradigm, rats were first repeatedly tested with vehicle or PD149163 (1.0, 4.0, 8.0 mg/kg, sc) along with vehicle or PCP for PPI and hyperlocomotion tests, then challenged with PD149163 after 2 drug-free days. All rats were then challenged with clozapine (5.0 mg/kg, sc). During the repeated test period, PD149163 exhibited antipsychotic-like effects in all three models. On the PD149163 challenge day, prior drug treatment only caused a tolerance effect in CAR. This tolerance in CAR was transferrable to clozapine, as it enhanced clozapine tolerance in the same group of animals. Although no tolerance effect was seen in the PD149163 challenge for the PCP-induced hyperlocomotion test, the clozapine challenge showed increased sensitivity in groups previously exposed to repeated PD149163 treatment. Our findings suggest repeated exposure to NTS1 receptor agonists can induce a dose-dependent tolerance and cross-tolerance to clozapine to some of its behavioral effects but not others

    Addressing Discrimination Against Asian American and Pacific Islander Youths: The Mental Health Provider\u27s Role

    No full text
    Asian American and Pacific Islanders (AAPI) are the fastest growing racial minority in the United States. With more than 40 subgroups in the diaspora, 1 in 10 American youths will be of Asian origin by 2060. Racism-defined as prejudice, discrimination or antagonism on the basis of membership in a particular racial or ethnic group-is increasingly recognized as a public health crisis. Anti-AAPI racism, such as unequal resource distribution in housing, education, employment, and health care, exclusionary naturalization policies and violence (eg, Pacific coast riots, Japanese Americans\u27 internment during World War II, recent Atlanta shootings) is well documented. Anti-AAPI microaggressions-that is, the subtle, sometimes unintentional forms of racism such as characterizations as perpetual foreigners, ascriptions of intelligence, oversexualization of women, invalidated interethnic differences, and model minority myth-are common. The model minority stereotype dismisses real struggles and pits AAPIs against other racial minorities. Despite the proud tradition of AAPI activism , discrimination is often endured in silence, probably stemming from cultural values of stoicism and harmony, and tacit societal acceptance of racism.
    corecore